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Abstract
In this paper, we investigate analytically and numerically the modulational
instability in a model of nonlinear physical systems such as Bose–Einstein
condensates in a deep optical lattice. This model is described by the discrete
complex cubic–quintic Ginzburg–Landau equation with a non-local quintic
term. We obtain characteristics of the modulational instability in the form of
typical dependences of the instability growth rate (gain) on the perturbation
wavenumber and the system’s parameters. Excellent agreement has been
obtained between the analytical and numerical study. Further, we derive the
periodic function and new type of solitary wave solutions for the above system.
By using the extended Jacobi elliptic function approach, we obtain the exact
stationary solitons and periodic wave solutions of this equation. These solutions
include the Jacobi periodic wave solution, alternating phase Jacobi periodic
wave solution, kink and bubble soliton solutions, alternating phase kink soliton
and alternating phase bubble soliton solutions.

PACS numbers: 74.20.De, 03.75.Lm

1. Introduction

Complex Ginzburg–Landau (CGL) equations are universal models describing the formation
of nonlinear dissipative patterns, which find direct applications in nonlinear optics,
hydrodynamics, superconductivity, chemical waves, etc [1]. The CGL equation was originally
introduced with linear gain and cubic nonlinear loss. This equation gives rise to exact solutions
for solitary pulses [2], but they are unstable. The most straightforward way to modify the
equation so as to facilitate the existence of stable pulses is to introduce the cubic–quintic
nonlinearity, with linear loss and cubic gain, supplemented by a quintic loss term to secure
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the overall stability of the model. The complex cubic–quintic Ginzburg–Landau (CCQGL)
equation was originally proposed by Sergeev and Petviashvili [3], and stable solitary pulses
in this model were first predicted in [4]. Later, solutions of the CCQGL equation were
investigated by many authors in great detail [5].

In recent years, discrete solitons have been investigated in many diverse branches of
physical systems such as Bose–Einstein condensates (BECs) [6], optical waveguide arrays
[7], solid state physics [8] and photonic crystal structures [9]. The two-dimensional discrete
solitons have been observed in nonlinear photonic lattice [10]. The dynamical and structural
stability of the discrete breathers have been discussed in detail for various nonlinear physical
systems [11]. Recently, discrete breathers have also been reported in an array of BECs [12].
By using the extended Jacobi elliptic function approach, the exact periodic and solitary wave
solutions have been constructed for the discrete nonlinear Schrödinger equation with non-local
cubic and quintic nonlinear terms [13]. Discrete CGL equation models have also been studied
in the literature [14]. Maruno et al have derived a set of exact solutions for the discrete
complex cubic Ginzburg–Landau equation which includes periodic, bright and dark soliton
solutions [15].

The stability of the open BEC has been discussed under the influence of the real and
imaginary parts of the two-body interaction effect [16]. Recently, modulational instability
(MI) and the properties of discrete breathers have been investigated for the system of BECs in
optical lattice with the influence of the real part of the three-body interactions [17–19]. The
dynamics of growth and collapse of BECs have been discussed in detail with an imaginary
part of three-body interaction, i.e. dissipation loss term [20]. With these studies of higher
order interactions having been already reported individually in real and imaginary domains
separately, we have now analyzed the modulational instability and found the exact periodic
and soliton solutions in BECs in a deep optical lattice with the inclusion of the complex
form of cubic (two-body interaction) and quintic (three-body interaction) nonlinear terms. We
consider a one-dimensional BEC in deep optical lattice described by the following discrete
complex cubic–quintic Ginzburg–Landau (DCCQGL) equation [21–23]:

i
∂ψn

∂t
+ (α − iβ)(ψn+1 + ψn−1 − 2ψn) + (σ − iε)|ψn|2ψn + (ν − iλ)|ψn|4ψn − iγψn = 0,

(1)

where all nonlinear terms are local in nature. High atomic density of the BEC in the optical
lattice implies that the effect due to the interatomic interactions can become important. The
most prominent effect associated with the periodicity of the lattice is the boson tunneling from
one well to the next [24]. With this effect, the BEC atoms are confined in an array of optical
traps, and the tunneling among the BECs confined in the multiwell potential has been observed
in [25]. In equation (1), ψn represents the complex wave function at site n. Physically, the
coefficient α accounts for the energy tunneling between adjacent elements of the lattice, while
the imaginary term β stands for gain (loss) due to the coupling between neighboring sites
of the optical lattice. In general, the cubic and quintic nonlinearity coefficients are complex
quantities. The real parts of the cubic and quintic nonlinearity coefficients σ and ν correspond
to the two- and three-body elastic collisions in the condensates. The coefficient σ satisfies the
following conditions: σ > 0 corresponds to the repulsive interaction and σ < 0 represents
an attractive interaction case. Next, the imaginary part of the cubic and quintic nonlinearity
coefficients ε and λ appears due to two- and three-body inelastic collisions in the condensates
[18, 26]. Finally, the coefficient γ indicates the linear loss/gain parameter due to the feeding
strength from the thermal clouds of the condensates. When β = ε = ν = λ = γ = 0,
equation (1) is reduced to the (non-integrable) discrete nonlinear Schrödinger equation [27].
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The MI and pattern formation have been discussed in the discrete dissipative system described
by the DCCQGL equation with local cubic and quintic nonlinear terms [21]. By using the
perturbation technique, Abdullaev et al found the soliton solution for the DCCQGL equation
with non-local cubic and local quintic nonlinear terms which is valid at small values of the
dissipative terms for this equation [22]. In [23], the discrete soliton has been analyzed for
the DCCQGL equation having several features that have no counterparts in either continuous
limit or other conservative discrete models.

When the quintic nonlinear term is dropped in equation (1), the cubic nonlinear equation
is shown to exhibit a lack of stable solutions, except in very special cases [28]. In the case of
a cubic nonlinear equation, after a certain distance of propagation the soliton either collapses
or disappears. Stability can be achieved if we add quintic terms to the system. In physics
problems, the quintic nonlinearity can be equal to or even more important than the cubic one
[28] as it is responsible for more stability of localized solutions. Note that in our system of
BECs, the quintic mean-field nonlinearity corresponds to the three-body interaction effects
which occur only when the density of BECs in optical lattice is increased. The existence of
three-body interactions can play an important role in terms of condensate stability [26, 29].
Hence, the nonlocal quintic term plays a crucial role in the system of BEC in a deep optical
lattice when the interaction is between the boson and the next-nearest-neighboring bosons.
The exact solutions for the DCCQGL equation with the non-local quintic term of lowest order
responsible for the dissipation which are mainly different from the approximate solutions
obtained for the DCCQGL equation with the local quintic term with the dissipative term being
small have been proposed [30]. In the same way, the exact soliton and periodic solutions for the
DCCQGL equation with the non-local quintic term of lowest order for the dynamics of the BEC
under the influence of the strong three-body collisions are dissimilar from the approximate
solutions for the DCCQGL equation with the local quintic nonlinear term. Therefore, the
exact stable solution can be achieved by changing the non-local quintic term instead of local
quintic in equation (1). Then, the DCCQGL equation with the non-local quintic term is as
follows [30, 31]:

i
∂ψn

∂t
+ (α − iβ)(ψn+1 + ψn−1 − 2ψn) + (σ − iε)|ψn|2ψn

+ (ν − iλ)|ψn|4(ψn+1 + ψn−1) − iγψn = 0. (2)

The quintic nonlinear term in equation (2) represents the non-local term which is different
from the system studied in [22, 23]. The dissipative soliton has been investigated for the
DCCQGL equation with the non-local quintic term [30]. The continuum limit of equation (1)
is the CCQGL equation [32]:

i
∂ψ

∂t
+ (α − iβ)

∂2ψ

∂x2
+ (σ − iε)|ψ |2ψ + (ν − iλ)|ψ |4ψ − iγψ = 0. (3)

Equation (3) is applicable to many physically realizable systems such as superconductivity
and superfluidity [33], non-equilibrium fluid dynamics [34], chemical systems [35], nonlinear
optics [36, 37], BECs [16], etc.

Note that the exact solutions of equation (2) have been derived by using the extended tanh-
function approach [31]. In this paper, we derive the new form of exact periodic and soliton
solutions of equation (2) by using the extended Jacobi elliptic function approach. The paper is
organized as follows. In section 2, we present the scheme of the linear stability analysis. The
results and discussions of the MI analysis are also presented and also our analytical results are
verified through numerical methods. Furthermore, the new form of exact (periodic and new
type of soliton) solutions are also carried out for the underlying equations in section 3. The
conclusion is presented in section 4.
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2. Modulational instability

Recently, the MI and pattern formation have been reported for the discrete dissipative system
governed by equation (1) [21]. In recent times, the dynamics and stability of BECs trapped
in a deep one-dimensional periodic optical lattice with the elastic properties of the two- and
three-body interactions have been reported in [38]. In this section, we analyze instabilities of
BECs trapped in an optical lattice with elastic and inelastic properties of the two- and three-
body interactions including feeding of the condensates term, which is described by equation
(2). The aim of the stability analysis is to perturb the system slightly and then study whether
this small perturbation grows or decays with propagation. Now, we proceed to discuss the
occurrence of MI for the considered system. The plane wave solution to equation (2) with
constant amplitude, A, is

ψn = A ei(qn−ωt), (4)

where q and ω are the wavenumber and frequency, respectively. Substituting equation (4) in
equation (2), we obtain the nonlinear dispersion relation

ω = 2α − σA2 − 2 cos(q)[α + νA4] (5)

A2 = −ε ±
√

ε2 + 8λ cos(q)(2β − 2β cos(q) − γ )

4λ cos(q)
. (6)

The initial amplitude of the plane wave solution (6) is different compared with the
equation (2) in [21]. Without the nonlocal term, the stability of the plane wave solution
is strongly affected by the dissipative loss parameter [21]. Also, in [21] the stability of the
system is analyzed in general and not widely discussed for the different physical conditions
of the carrier wavenumber q = 0, π and π/2. In [21], we considered the first two values of q
(0, π ) where the stability of the plane wave solution is strongly affected by the dissipative loss
parameter. Also, the instability gain of the plane wave solution is determined for q = π/2.
To the best of our knowledge, these discussions are entirely different under the influence of
a nonlocal term. In this section, we discus the stability of the amplitude modulation of the
plane wave solution for different values of the carrier wavenumber q under the influence of
the nonlocality in detail. To analyze the MI of plane wave solutions (4), we perturb them by
introducing

ψn = (A + φn) ei(qn−ωt), (7)

where φn is an infinitesimal complex perturbation which obeys the following linearized
equations,

i
∂φn

∂t
+ (α + σA4)[cos(q)(φn+1 + φn−1) + i sin(q)(φn+1 − φn−1)]

− 2α cos(q)φn + 2σA4 cos(q)(φn + 2φ∗
n) + ηA2(φn + φ∗

n) = 0, (8)

where φ∗
n is the complex conjugate. The modulational perturbation is taken in the ordinary

form,

φn = φ1 ei(Qn−�t) + φ∗
2 e−i(Qn−�∗t), (9)

where Q and � are, respectively, an arbitrary wavenumber and the corresponding frequency
of the perturbation. Substituting equation (9) into equation (8), we obtain the matrix form for
the set of homogeneous equations for φ1 and φ2:(

m11 − i� m12

m21 m22 − i�

) (
φ1

φ2

)
= 0. (10)
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The coefficients of the 2 × 2 matrix (mij) are given in the appendix. The dispersion relation,
which determines � as a function of Q, is obtained from the solvability condition of the
homogeneous matrix equation when its determinant of the coefficient matrix vanishes. Finally,
we obtain the dispersion relation of the amplitude modulation of the plane wave as

�2 + i�(m11 + m22) + m12m21 − m11m22 = 0. (11)

Since the dispersion relation (11) is complex, then the instability of the system is defined by
the imaginary part of �(Q), i.e. G ≡ |Im(�(Q))|. It should be noted that the presence of
a trigonometric function in the dispersion relation (11) makes a main difference between the
continuous and discrete systems. From equation (11), we analyze the condition of the MI
gain for the unstaggered (large wavelength limit) and staggered (short wavelength limit) cases
about the carrier wavenumber q for both attractive and repulsive condensates as follows.

2.1. Large wavelength limit

First, we consider the unstaggered (large wavelength limit) case when the carrier wavenumber
q = 0; the linear property of equation (11) in q explains that the BEC system supports the
sound waves which propagate on the top of the plane wave ψn = A ei(qn−ωt). According to this
condition of q, the values of sin(q) = 0, cos(q) = 1 and hence the solutions of the dispersion
relation (11) are

�±|q=0 = Uq=0 ±
√

X1 − X2 − X3, (12)

where Uq=0 = εA2 − 2(β − λA4) + 2(β + λA4) cos(Q), X1 = 2ε2A4 + 16ελA6 + 32λ2A8,
X2 = 8[σA2(α+νA4)−2(α2−ν2A8)](cos(Q)−1), X3 = 8[α2 +ν2A8 +2ανA4](cos2(Q)−1)

and A2 = 1
4λ

(−ε ± √
8λ[(γcr )q=0 − γ ]

)
with (γcr )q=0 = ε2

8λ
. It is interesting to mention here

that when the imaginary part of the three-body interaction coefficient λ → 0, the amplitude
of the carrier wave A → ∞. Then the three-body inelastic collision will play a crucial role in
the dispersion relation (12). From the dispersion relation (12), the MI gain relation can be
written as

Gq=0 = |Im(�±|q=0)| =
√

X3 + X2 − X1. (13)

In the large wavelength limit, the dispersion relation (12) contains the dissipative loss parameter
β while the gain relation (13) does not include β, which means that the stability of the plane
wave solution becomes unaffected by the dissipative loss parameter β due to the crucial
role of the nonlocal term. For the unstaggered (large carrier wavelength limit) case, the
amplitude modulation of the plane wave solution is unstable for the following two conditions:
(i) γ < (γcr)q=0, λ > 0 and the gain region can be defined by

cos(Q) >
2α2 − σαA2 − νA6(σ + 2νA2) − √

M

2(α + νA4)2
for σ > 0, (14)

cos(Q) <
2α2 − σαA2 − νA6(σ + 2νA2) − √

M

2(α + νA4)2
for σ < 0. (15)

(ii) γ > (γcr)q=0, λ < 0, and the conditions of cos(Q) are exactly exchanged for σ

conditions as compared with the previous conditions of the gain region, where M =
A4(α+νA4)2(ε2 +8ελA2 +16A4{ν2 +λ2}+8σνA2 +σ 2). Figure 1 portrays the MI gain spectra
for the unstaggered condition wherein the two above-mentioned conditions are satisfied. The
solid line corresponds to a repulsive condensate when the strength of the nonlinear coefficient
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Figure 1. Instability gain spectrum for the unstaggered condition (q = 0) when (a) λ = 0.25 and
γ = 0.1; (b) λ = −0.25 and γ = −0.1. The solid line corresponds to a repulsive condensate when
σ = 1. The dashed line corresponds to an attractive condensate when σ = −1. Other physical
parameter values are α = 0.5, ε = −0.5 and ν = 0.2.

σ = 1 and the dashed line corresponds to an attractive case for σ = −1. Considering the
first period between 0 and 2π in figure 1(a), the MI gain for γ < (γcr)q=0, λ > 0 occurs
only in the negative region of cos(Q) > 0.8987 for the repulsive condensate (solid line)
and cos(Q) < 0.9666 for the attractive condensate (dashed line) when the strength of the
feeding term is positive, which is clearly seen in figure 1(a). The scenario of MI gain for the
second condition as γ > (γcr)q=0, λ < 0, gets exactly reversed which is clearly portrayed in
figure 1(b). When the value of perturbed wavenumber Q = (2n + 1)π (n = 0, 1, 2, . . .), the
optimum instability gain can be calculated by

(Gopt)q=0 = [2(16α2 − 8σαA2 − ε2A4 − 8(ελ + νσ)A6 − 16(λ2 + ν2)A8)]
1
2 . (16)

2.2. Short wavelength limit

Next, we consider the staggered case when q = π ; the linear property of equation (11) in q
explains that the BEC system supports the unsteady sound waves which propagate on the top
(n is even) of the plane wave ψn = A ei(qn−μt) or at the bottom (n is odd) of the plane wave.
For this above-mentioned condition of q, the values of sin(q) = 0, cos(q) = −1 and hence
the solutions of the dispersion relation (11) are as follows:

�±|q=π = Uq=π ±
√

Y1 + Y2 − Y3, (17)

where Uq=π = εA2 +2(β −λA4)−2(β +λA4) cos(Q), Y1 = 2ε2A4 −16ελA6 +32λ2A8, Y2 =
8[σA2(α+νA4)+2(α2−ν2A8)](cos(Q)−1), Y3 = X3 and A2 = 1

4λ
(−ε±√

8λ[γ − (γcr )q=π ])

with (γcr )q=π = 4β − ε2

8λ
. From relation (17), we obtain the MI gain relation for the staggered

case as follows:

Gq=π = |Im(�±|q=π )| =
√

Y3 − Y2 − Y1. (18)

For the short wavelength limit, the dispersion relation (17) and the gain relation (18) depend
on the dissipative loss parameter (β). For this reason, the instability condition of the amplitude
modulation of the plane wave solution is strongly affected by the influence of the dissipative
loss parameter β. In the staggered (short carrier wavelength limit) case, the amplitude
modulation of the plane wave solution is unstable for the following two different conditions:

6
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Figure 2. Instability gain spectrum for the staggered condition (q = π ) when (a) λ = 0.5 and
γ = 0.05; (b) λ = −0.5 and γ = 0.05. The solid and dashed lines correspond to the repulsive
(σ = 1) and attractive σ = −1 condensates, respectively. Other physical parameter values are
α = 0.5, β = 0.025, ε = −0.5 and ν = 0.2.

(i) γ > (γcr)q=π , λ > 0 and the region of the MI gain can be described by

cos(Q) <
2α2 + σαA2 + νA6(σ − 2νA2) − √

N

2(α + νA4)2
for σ > 0, (19)

cos(Q) >
2α2 + σαA2 + νA6(σ − 2νA2) − √

N

2(α + νA4)2
for σ < 0. (20)

(ii) γ < (γcr)q=π , λ < 0, and the conditions of cos(Q) are exactly exchanged for σ conditions
as compared with the previous condition, where N = A4(α + νA4)2(ε2 − 8ελA2 + 16A4{ν2 +
λ2}−8σνA2 +σ 2). Figure 2 depicts the MI gain spectra for repulsive (solid line when σ = 1)
and attractive (dashed line when σ = −1) condensates for the staggered condition when
q = π . Now, we choose the one period between 0 and 2π in figure 2(a); the MI gain for
γ > (γcr)q=π , λ > 0 occurs only when cos(Q) < 0.7578 for a repulsive condensate (solid
line) and in the negative region of cos(Q) > 0.0545 for an attractive condensate (dashed
line) which is clearly seen in figure 2(a). We observe from figure 2(b) that the MI gain for
γ < (γcr)q=π , λ < 0 arises only in the negative region of cos(Q) > 0.9011 for a repulsive
case and cos(Q) < 0.3710 for an attractive one. When Q = (2n + 1)π (n = 0, 1, 2, . . .), the
optimum instability gain can be written as

(Gopt)q=π = [2(16α2 + 8σαA2 − ε2A4 + 8(ελ + νσ)A6 − 16(λ2 + ν2)A8)]
1
2 . (21)

In the high atomic density case, the three-body interaction is more dominant than the
two-body interaction. Then the cubic nonlinear coefficients take the values σ = ε = 0.
Hence, the stability of BEC in optical lattice is controlled by the three-body interactions. For
the unstaggered case (q = 0), the MI can occur for the following two conditions: (i) γ < 0,
λ > 0, (ii) γ > 0, λ < 0, otherwise stable. Next, we consider the staggered case (q = π ). If
λ > 0, we have MI when γ > 4β and if λ < 0, then we have MI when γ < 4β, otherwise
stable.

Finally, we consider the value of the carrier wavenumber q = π/2; then sin(q) = 1,
cos(q) = 0 but A2 → ∞, and hence the dispersion relation �q= π

2
→ ∞. Then the instability

of the plane wave solution cannot be determined, i.e. the plane wave solution is always stable
for the above-mentioned condition. In the absence of nonlocality [21], the stability of the
plane wave solution is affected when q = π/2.

7
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Figure 3. Propagation of stable patterns though the system at time 300 units induced by the
modulational instability. Other physical parameter values are q = 5π/3, Q = 2π/3, α = 0.5,
β = 0.2, σ = 1, ν = 2/3, ε = λ = −0.7 and γ = 2.

2.3. Numerical results

Linear stability analysis can determine the instability domain in parameter space and predict
quantitatively how the amplitude of the modulation sideband evolves at the onset of instability.
However, such analysis is based on the linearization around the unperturbed carrier wave,
which is valid only when the amplitude of perturbation is small in comparison with that of the
carrier wave. Clearly, the linear approximation must fail at large time scales as the amplitude
of the unstable sideband grows exponentially. In order to check the validity of our analytical
analysis and to investigate the longtime evolution of the modulated nonlinear wave, we have
carried out numerical investigations of MI on the DCCQGL equation (2). Equation (2) has
been integrated with a fourth-order Runge–Kutta scheme, with the given initial condition (6),
and periodic boundary conditions [39, 40].

Let us consider the case φ1 = φ2 = 0.1, q = 5π/3, Q = 2π/3, γ = 2, α = 1/2, β = 0.2,
σ = 1, ν = 2/3 and ε = λ = −0.7. The initial excitation moves without changing its form
as coherent states. The wave pattern displayed by the set of the preceding parameters’ system
is that of a plane wave with a sinusoidal form, with a constant amplitude that is not sensitive
to any modulation as the time increases. Therefore, the system is said to be stable under the
corresponding modulation. This feature is described in figure 3 at time 300 units.

As a second case, let us consider φ1 = φ2 = 0.01, q = 5π/3, Q = 5π/4, γ = 2,
α = 0.5, β = 0.2, ε = 2/3 and λ = ν = −0.7. For this value of parameters, the initial
condition is introduced in the system. One obtains an interesting phenomenon: the wave
displays an oscillating and breathing wave behavior. The amplitude of the wave generated by
wave motion is modulated in the form of a train of small amplitude with short wavelength.
Figure 4(a) presents such a phenomenon at time 300 units. From the parameters of figure 4(b),
we now consider q = π/3 and Q = 5π/8. We have observed that the wavelength of each
wave packet slightly increases but their number decreases. Each component of the train of
the wave depicted in figure 4(b) has the shape of a soliton-like object. One can conclude that
the value of the wavenumber of modulation influences the number of waves oscillating with a
soliton-like shape in the train. It is interesting to note that, at the staggered (short wavelength)
condition, the matter wave soliton train of oscillatory form can be generated in the optical
lattice by a small perturbation of the plane wave solution which is clearly demonstrated in
figure 4(b). One can also add that this type of evolution is typical for modulationally unstable

8
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Figure 4. Propagation of unstable patterns though the system at time 300 units induced by the
modulational instability. Other physical parameter values are α = 0.5, β = 0.2, ε = 2/3,
ν = λ = −0.7, γ = 2 for (a) the small amplitude periodic pattern when q = 5π/3, Q = 5π/4;
(b) matter wave soliton train-like pattern when q = π/3, Q = 5π/8.

discrete systems, and has been observed in numerous publications dealing with MI in similar
systems from Kivshar and Peyrard’s work onwards [40, 41].

It is well known that MI is a fundamental mechanism that leads to the formation of
localized solitary-wave structures in a variety of settings. The most standard mechanism
through which bright solitons and solitary wave structures appear is the activation of the MI
of plane wave (see figure 4). Since the disintegration of figure 4 typically occurs in the
same parameter region where bright solitons are observed, MI is considered to some extent
a precursor to soliton formation. So, the next section will be dedicated to deriving such
solutions.

3. Exact solutions of the DCCQGL equation

Recently, the exact periodic and soliton solutions have been derived for the DCCQGL equation
by using the extended tanh-function approach [31]. In this section, we are interested in
deriving the new form of periodic and soliton solutions for the DCCQGL equation by using
the extended Jacobi elliptic function approach. Now, we achieve the exact solution of the
DCCQGL equation under the following transformations:

ψn = eiθnVn(ρn), (22)

where ρn = un + ct + δ1 and θn = rn + st + δ2. We can also write ψn±1 = eiθn e±irVn±1(ρn±1)

with ρn±1 = ρn ± u. Substituting equation (22) into equation (2), and separating the real and
imaginary parts, we obtain(
α + νV 4

n

)
cos(r)(Vn+1 + Vn−1) +

(
β + λV 4

n

)
sin(r)(Vn+1 − Vn−1)

− (2α + s)Vn + σV 3
n = 0, (23)

cV ′
n − (

β + λV 4
n

)
cos(r)(Vn+1 + Vn−1) +

(
α + νV 4

n

)
sin(r)(Vn+1 − Vn−1)

+ (2β − γ )Vn − εV 3
n = 0, (24)
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where Vn ≡ Vn(ρn), Vn+1 ≡ Vn+1(ρn+1), Vn−1 ≡ Vn−1(ρn−1) and V ′
n = ∂Vn

∂t
. The solution of

equations (23) and (24) in terms of the series expansion of the Jacobi elliptic function is given
by [13]

Vn(ρn) = μ0 + μ1 sn(ρn) + μ2 sn2(ρn). (25)

Similarly, we can write Vn±1(ρn±1) = μ0 +μ1 sn(ρn±1)+μ2 sn2(ρn±1), where sn(ρn), sn(ρn+1)

and sn(ρn−1) are the standard Jacobi elliptic functions with the modulus m (0 < m < 1).
In this paper, we utilize both cnoidal and solitary wave theories to investigate the dynamical
evolution of BECs. By using the addition property of the Jacobi elliptic function, the values
of sn(ρn+1) and sn(ρn−1) can be written as

sn(ρn±1) = sn(ρn ± u) = sn(ρn) cn(u) dn(u) ± sn(u) cn(ρn) dn(ρn)

1 − m2 sn2(ρn) sn2(u)
. (26)

Substituting equations (25) and (26) into equations (23) and (24), we obtain a series
of over-determined algebraic equations by eliminating the denominator and setting the
coefficients of all powers like sni (ρn) (i = 0, 1, 2, 3, . . . , 10) and cn(ρn) dn(ρn) snj (ρn)

(j = 0, 1, 2, 3, . . . , 10) to zero. To avoid the tediousness, we omit the over-determined
algebraic equations. From the algebraic equations, we found the important relations for the
system parameters as

β = −α, γ = s, λ = −ν and ε = −σ. (27)

The above relations are obtained by different methods in [30, 31]. In [30] the authors have
derived the periodic and Jacobi elliptic function solutions for the non-local DCCQGL equation
by using the Hirota method. The initial amplitude of the solution is chosen arbitrarily and then
the modulus of the Jacobi elliptic function is derived. However, the modulus of the Jacobi
elliptic function is well known; it is between 0 and 1. So the determination of the atomic
density of the condensate is not at all exact because the initial amplitude of the solution is
arbitrary. In this paper, we derived the Jacobi elliptic function and solitary wave solutions
for the nonlocal DCCQGL equation by using the extended Jacobi elliptic function approach.
The method of approach and form of our solution is entirely different from that in [30], where
we are quite sure about its complete novelty. Our aim is to calculate the atomic density of
the condensate. For this reason, we have derived the Jacobi elliptic solutions with the exact
determination of the initial amplitudes μ1 and μ2 (see equation (25)) as a function of the
system parameters and modulus of the Jacobi elliptic function m. Therefore, the amplitude of
periodic and solitary wave solutions can be calculated exactly to give the total number of atoms
in the condensates. Under these parametric conditions (27), we solve the remaining algebraic
equations. From our detailed analysis, we have found that the exact solution is possible
only if the real and imaginary part of the system parameters satisfy the conditions (27).
Thus, with the help of above system parameter conditions, we have obtained the new form of
exact periodic and soliton solutions for equation (2) as follows.

3.1. Simple sn and kink soliton solutions

In this subsection, we find the periodic sn and kink soliton solutions of equation (2). To
proceed further, we set the parameter values c = 0, μ0 = μ2 = 0 and r = 0; then, we obtain
s = 2α[cn(u) dn(u) − 1]. Using these physical parameter values, the new type of simple sn

periodic solution is found to be

ψ(1)
n = ±m sn(u)

[
σ ±

√
σ 2 + 4αν cn2(u) dn2(u)

2ν cn(u) dn(u)

]1/2

sn(un + δ1) ei[2α[cn(u) dn(u)−1]t+δ2]. (28)

10
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Figure 5. The simple sn and kink soliton solution for equation (2). (a) Periodic sn solution.
(b) Kink soliton solution. Other physical parameters are r = 0, t = 0, u = 1, α = 1, ν = 1
and δ1 = δ2 = 0. In both figures, the solid and dashed lines correspond to repulsive (σ = 1) and
attractive (σ = −1) condensates, respectively.

The parameter δ1 in equation (28) defines the position of the solution. When δ1 = 0, the center
of the solution coincides with the lattice site, which means that the solution is symmetric.
Moreover, for the value of δ1 �= 0, the solution is asymmetric because the center of the
solution is located between the lattice sites. The parameter δ2 in equation (28) is an arbitrary
constant. Figure 5(a) portrays the properties of the simple sn solution of equation (2) when
r = 0. Other physical parameters are m = 0.9, u = 1, α = 1, ν = 1 and δ1 = δ2 = 0. As
observed in figure 5(a), the solid line corresponds to the sn solution of the repulsive condensate
when σ = 1 and the dashed line represents the sn solution of the attractive condensate when
σ = −1. Substituting the modulus of the Jacobi elliptic function m = 1 in equation (28), we
obtain a new type of kink soliton solution of equation (2) which is given as follows:

ψ(2)
n = ± tanh(u)

[
σ ±

√
σ 2 + 4αν sech4(u)

2ν sech2(u)

]1/2

tanh(un + δ1) ei[2α(sech2(u)−1)t+δ2]. (29)

The properties of the kink soliton solution is shown in figure 5(b). As plotted in figure 5(b),
the solid and dashed lines correspond to the kink soliton solution for repulsive (σ = 1) and
attractive (σ = −1) condensates, respectively.

3.2. Simple sn2 and bubble soliton solutions

In order to discuss the next interesting case for the exact periodic and soliton solutions, we
consider c = 0, μ0 = μ1 = 0 and r = 0. Then, we have the value s = 2α[cn2(u) dn2(u)− 1].
According to these conditions, the simple sn2 periodic solution of equation (2) can be written
as

ψ(3)
n = ±m2

√
2α

σ
sn2(u) cn(u) dn(u) sn2(un + δ1) ei[2α[cn2(u) dn2(u)−1]t+δ2]. (30)

This sn2 solution of equation (2) exists only when the following two conditions are satisfied:
(i) σ > 0, α > 0, and (ii) σ < 0, α < 0. These conditions also exist for the bubble soliton
solution of equation (2) when m = 1. Figure 6(a) depicts the sn2 solution for the attractive

11
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Figure 6. The plots for the simple sn2 and bubble soliton solutions of the DCCQGL equation.
(a) Periodic sn2 and (b) bubble soliton solutions for attractive condensate when σ = −1, α = −1.
Other physical parameter values are r = 0, t = 0, u = 1, ν = 1 and δ1 = δ2 = 0. The same plots
are obtained for repulsive condensates when σ = 1, α = 1.

condensate when σ = −1 and α = −1. In addition, we obtain the same plot for the repulsive
condensate when σ = 1 and α = 1. From solution (30), we obtain a new type of bubble
soliton solution of equation (2), when m = 1, given as

ψ(4)
n = ±

√
2α

σ
tanh2(u) sech2(u) tanh2(un + δ1) ei[2α(sech4(u)−1)t+δ2]. (31)

The above solution (31) is called the new form of the bubble soliton solution of equation (2).
The conditions for the bubble soliton are also mentioned in this section. The properties of
bubble soliton solutions are shown in figure 6(b).

3.3. Alternating phase sn and kink soliton solutions

In contrast to the above studies, here we consider the parameter values as c = 0, μ0 = μ2 = 0,
r = π; then, we find s = −2α[cn(u) dn(u)+ 1]. Using these parameter values, the alternating
phase sn solutions of the DCCQGL equation can be written as

ψ(5)
n = ±m(−1)n sn(u)

[
−σ ±

√
σ 2 + 4αν cn2(u) dn2(u)

2ν cn(u) dn(u)

]1/2

× sn(un + δ1) ei[−2α(cn(u) dn(u)+1)t+δ2]. (32)

Figure 7(a) shows the properties of the alternating phase sn solution of equation (2) when
r = π . Figure 7(a) represents the alternating phase sn solution for the repulsive (σ = 1)
condensate as indicated by the thick line and thin line for the attractive case (σ = −1).
Substituting the modulus of the Jacobi elliptic function m = 1 in equation (32), we obtain a
new type of alternating phase kink soliton solution of equation (2), when r = π, given by

ψ(6)
n = ±(−1)n tanh(u)

[
−σ ±

√
σ 2 + 4αν sech4(u)

2ν sech2(u)

]1/2

× tanh(un + δ1) ei[−2α(sech2(u)+1)t+δ2]. (33)

The properties of alternating phase kink soliton solutions are displayed in figure 7(b). In
figure 7(b), the thick line corresponds to the soliton solution of the repulsive condensate when

12
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Figure 7. The alternating phase sn and kink soliton solutions of the DCCQGL equation.
(a) The alternating phase sn solution when m = 0.9. (b) The alternating phase kink soliton
when m = 1. Other physical parameters are t = 0, r = π , u = 1, α = 1, ν = 1 and δ1 = δ2 = 0.
In both figures, the thick and thin lines represent the repulsive (σ = 1) and attractive (σ = −1)
condensates, respectively.

σ = 1 and the thin line represents the soliton solution of the attractive condensate when
σ = −1.

3.4. Alternating phase sn2 and bubble soliton solutions

Finally, we consider the parameter values as c = 0, μ0 = μ1 = 0, r = π . Then, we obtain
s = −2α[cn2(u) dn2(u) + 1]. With the help of these parameter values, the alternating phase
sn2 solution of equation (2) is given by

ψ(7)
n = ±m2(−1)n

√
−2α

σ
sn2(u) cn(u) dn(u) sn2(un + δ1)e

i[−2α(cn2(u) dn2(u)+1)t+δ2]. (34)

The alternating phase sn2 solution exists if the following two physical conditions are satisfied:
(i) σ > 0, α < 0, and (ii) σ =< 0, α > 0. Figure 8(a) shows the alternating phase sn2

solution for the attractive condensate when σ = −1 and α = 1. Further, we obtain the same
plot for the repulsive condensate when σ = 1 and α = −1. When the modulus of the Jacobi
elliptic function is equal to 1, the exact alternating phase bubble soliton solution is found to be

ψ(8)
n = ±(−1)n

√
−2α

σ
tanh2(u) sech2(u) tanh2(un + δ1) ei[−2α(sech4(u)+1)t+δ2]. (35)

The two above-mentioned conditions also exist for the alternating phase bubble soliton
solution. The properties for the alternating phase bubble soliton solution for attractive (σ = −1
and α = 1) condensates is shown in figure 8(b). We have also generated the same plot for the
repulsive condensate when σ = 1 and α = −1.

In the system of BECs, the atomic density of periodic and solitary wave solutions is defined
by Nad = ∣∣ψ(j)

n

∣∣2
(j = 1, 2, . . . , 8). The atomic density of the condensate is a conserved

quantity whose determination is very much needed in the study of BECs. These amplitudes
are determined by the system parameters and modulus of the Jacobi elliptic function. From
these periodic and solitary wave solutions, one can exactly calculate the atomic density of the
condensates. When we fix the system parameter, the amplitude of the solution can only be
changed by varying the modulus parameter m. Therefore, these solutions will be more helpful
for BEC experiments in the near future. The predicted feature of our results could be possibly
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Figure 8. The alternating phase sn2 and bubble soliton solutions of equation (2). (a) The alternating
phase sn2 and (b) alternating phase bubble soliton solutions for the attractive condensates when
σ = −1 and α = 1. Other physical parameter values are t = 0, r = π , u = 1, ν = 1 and
δ1 = δ2 = 0. The same plots are obtained for repulsive condensates when σ = 1 and α = −1.

observed in experimental settings for the BEC in optical lattice. To the best of our knowledge,
the BEC in optical lattice is closely related to the most actual challenges of the modern
atom optics, namely developing the atomic chip and atomic waveguides. As regards their
intrinsic interest, lattice solitons have many potential applications in atomic interferometry
and matter-wave lasers.

4. Conclusion

In conclusion, we have investigated the modulational instability in a system of BECs in a
deep optical lattice, which is described by the discrete complex cubic–quintic Ginzburg–
Landau equation with the non-local quintic term. We have obtained the characteristics of
the modulational instability in the form of typical dependences of the instability growth rate
(gain) on the perturbation wavenumber and the system’s parameters. Numerical studies have
corroborated our analytical findings. By using the extended Jacobi elliptic function approach,
we have found a set of periodic and new type of solitary wave solutions for the considered
system. These solutions consist of simple Jacobi elliptic functions and alternating phase
Jacobi elliptic function solutions. Also, we have given the new type of kink and bubble soliton
solutions, alternating phase kink and bubble soliton solutions when the modulus of the Jacobi
elliptic function is set to be 1. These new forms of periodic and solitary wave solutions
and related properties are not only applicable in the BEC but also in many physical systems
such as nonlinear optics, phase transition, non-equilibrium systems, superconductivity and
superfluidity.
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Appendix

The coefficients of the 2 × 2 matrix (mij) of equation (10) are

m11 = (ε + iσ)A2 + 2(β + iα) cos(q){cos(Q) − 1} + 2(λ + iν)A4

× cos(q){cos(Q) + 1} − 2[β + iα + (λ + iν)A4] sin(q) sin(Q), (A.1)

m12 = (ε + iσ)A2 + 4(λ + iν)A4 cos(q), (A.2)

m21 = (ε − iσ)A2 + 4(λ − iν)A4 cos(q), (A.3)

m22 = (ε − iσ)A2 + 2(β − iα) cos(q){cos(Q) − 1} + 2(λ − iν)A4

× cos(q){cos(Q) + 1} + 2[β − iα + (λ − iν)A4] sin(q) sin(Q). (A.4)
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Schmidt K P, Dorier J, Läuchli A and Mila F 2006 Phys. Rev. B 74 174508
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